Legionella pneumophila OxyR Is a Redundant Transcriptional Regulator That Contributes to Expression Control of the Two-Component CpxRA System

Author:

Tanner Jennifer R.1,Patel Palak G.1,Hellinga Jacqueline R.1,Donald Lynda J.1,Jimenez Celine1,LeBlanc Jason J.23,Brassinga Ann Karen C.1

Affiliation:

1. Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada

2. Department of Pathology, Medicine, and Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada

3. Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority (NSHA), Halifax, Nova Scotia, Canada

Abstract

ABSTRACT Nominally an environmental organism, Legionella pneumophila is an intracellular parasite of protozoa but is also the causative agent of the pneumonia termed Legionnaires' disease, which results from inhalation of aerosolized bacteria by susceptible humans. Coordination of gene expression by a number of identified regulatory factors, including OxyR, assists L. pneumophila in adapting to the stresses of changing environments. L. pneumophila OxyR (OxyR Lp ) is an ortholog of Escherichia coli OxyR; however, OxyR Lp was shown elsewhere to be functionally divergent, such that it acts as a transcription regulator independently of the oxidative stress response. In this study, the use of improved gene deletion methods has enabled us to generate an unmarked in-frame deletion of oxyR in L. pneumophila . Lack of OxyR Lp did not affect in vitro growth or intracellular growth in Acanthamoeba castellanii protozoa and U937-derived macrophages. The expression of OxyR Lp does not appear to be regulated by CpxR, even though purified recombinant CpxR bound a DNA sequence similar to that reported for CpxR elsewhere. Surprisingly, a lack of OxyR Lp resulted in elevated activity of the promoters located upstream of icmR and the lpg1441-cpxA operon, and OxyR Lp directly bound to these promoter regions, suggesting that OxyR Lp is a direct repressor. Interestingly, a strain overexpressing OxyR Lp demonstrated reduced intracellular growth in A. castellanii but not in U937-derived macrophages, suggesting that balanced expression control of the two-component CpxRA system is necessary for survival in protozoa. Taken together, this study suggests that OxyR Lp is a functionally redundant transcriptional regulator in L. pneumophila under the conditions evaluated herein. IMPORTANCE Legionella pneumophila is an environmental pathogen, with its transmission to the human host dependent upon its ability to replicate in protozoa and survive within its aquatic niche. Understanding the genetic factors that contribute to L. pneumophila survival within each of these unique environments will be key to limiting future point-source outbreaks of Legionnaires' disease. The transcriptional regulator L. pneumophila OxyR (OxyR Lp ) has been previously identified as a potential regulator of virulence traits warranting further investigation. This study demonstrated that oxyR is nonessential for L. pneumophila survival in vitro and in vivo via mutational analysis. While the mechanisms of how OxyR Lp expression is regulated remain elusive, this study shows that OxyR Lp negatively regulates the expression of the cpxRA two-component system necessary for intracellular survival in protozoa.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3