Dengue Virus Evolution under a Host-Targeted Antiviral

Author:

Plummer Emily1,Buck Michael D.1,Sanchez Marisa1,Greenbaum Jason A.1,Turner Julia1,Grewal Rajvir1,Klose Brennan2,Sampath Aruna2,Warfield Kelly L.2,Peters Bjoern1,Ramstedt Urban2,Shresta Sujan1

Affiliation:

1. La Jolla Institute for Allergy and Immunology, La Jolla, California, USA

2. Unither Virology, LLC, Silver Spring, Maryland, USA

Abstract

ABSTRACT The host-targeted antiviral drug UV-4B reduces viral replication and promotes survival in a mouse model of experimental dengue virus (DENV) infection. UV-4B is an iminosugar that inhibits the α-glucosidase family of enzymes and subsequently the folding of glycosylated proteins, both viral and host. Here, we utilized next-generation sequencing to investigate evolution of a flavivirus under selective pressure by a host-targeted antiviral in vivo . In viral populations recovered from UV-4B-treated mice, there was a significant increase in the number of single-nucleotide polymorphisms (SNPs) and the ratio of nonsynonymous to synonymous SNPs compared to findings in viral populations from vehicle-treated mice. The strongest evidence of positive selection was in the glycosylated membrane protein, thereby providing in vivo validation of the mechanism of action of an iminosugar. In addition, mutations in glycosylated proteins were present only in drug-treated mice after a single passage. However, the bulk of the other mutations were present in both populations, indicating nonspecific selective pressure. Together with the continued control of viremia by UV-4B, these findings are consistent with the previously predicted high genetic barrier to escape mutations in host-targeted antivirals. IMPORTANCE Although hundreds of millions of people are infected with DENV every year, there is currently no approved vaccine or antiviral therapy. UV-4B has demonstrated antiviral activity against DENV and is expected to enter clinical trials soon. Therefore, it is important to understand the mechanisms of DENV resistance to UV-4B. Host-targeted antivirals are thought to have a higher genetic barrier to escape mutants than directly acting antivirals, yet there are very few published studies of viral evolution under host-targeted antivirals. No study to date has described flavivirus evolution in vivo under selective pressure by a host-based antiviral drug. We present the first in vivo study of the sequential progression of viral evolution under selective pressure by a host-targeted antiviral compound. This study bolsters support for the clinical development of UV-4B as an antiviral drug against DENV, and it provides a framework to compare how treatment with other host-targeted antiflaviviral drugs in humans and different animal models influence viral genetic diversity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3