Discovery of Small-Molecule Human Immunodeficiency Virus Type 1 Entry Inhibitors That Target the gp120-Binding Domain of CD4
-
Published:2005-05-15
Issue:10
Volume:79
Page:6122-6133
-
ISSN:0022-538X
-
Container-title:Journal of Virology
-
language:en
-
Short-container-title:J Virol
Author:
Yang Quan-en1, Stephen Andrew G.2, Adelsberger Joseph W.3, Roberts Paula E.1, Zhu Weimin1, Currens Michael J.4, Feng Yaxiong5, Crise Bruce J.6, Gorelick Robert J.6, Rein Alan R.5, Fisher Robert J.2, Shoemaker Robert H.4, Sei Shizuko1
Affiliation:
1. Laboratory of Antiviral Drug Mechanisms 2. Protein Chemistry Laboratory 3. Clinical Services Program, SAIC-Frederick 4. Screening Technologies Branch 5. HIV Drug Resistance Program, NCI-Frederick 6. AIDS Vaccine Program, SAIC-Frederick, Frederick, Maryland
Abstract
ABSTRACT
The interaction between human immunodeficiency virus type 1 (HIV-1) gp120 and the CD4 receptor is highly specific and involves relatively small contact surfaces on both proteins according to crystal structure analysis. This molecularly conserved interaction presents an excellent opportunity for antiviral targeting. Here we report a group of pentavalent antimony-containing small molecule compounds, NSC 13778 (molecular weight, 319) and its analogs, which exert a potent anti-HIV activity. These compounds block the entry of X4-, R5-, and X4/R5-tropic HIV-1 strains into CD4
+
cells but show little or no activity in CD4-negative cells or against vesicular stomatitis virus-G pseudotyped virions. The compounds compete with gp120 for binding to CD4: either immobilized on a solid phase (soluble CD4) or on the T-cell surface (native CD4 receptor) as determined by a competitive gp120 capture enzyme-linked immunosorbent assay or flow cytometry. NSC 13778 binds to an N-terminal two-domain CD4 protein, D1/D2 CD4, immobilized on a surface plasmon resonance sensor chip, and dose dependently reduces the emission intensity of intrinsic tryptophan fluorescence of D1/D2 CD4, which contains two of the three tryptophan residues in the gp120-binding domain. Furthermore, T cells incubated with the compounds alone show decreased reactivity to anti-CD4 monoclonal antibodies known to recognize the gp120-binding site. In contrast to gp120-binders that inhibit gp120-CD4 interaction by binding to gp120, these compounds appear to disrupt gp120-CD4 contact by targeting the specific gp120-binding domain of CD4. NSC 13778 may represent a prototype of a new class of HIV-1 entry inhibitors that can break into the gp120-CD4 interface and mask the gp120-binding site on the CD4 molecules, effectively repelling incoming virions.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference76 articles.
1. Arthos, J., C. Cicala, T. D. Steenbeke, T. W. Chun, C. Dela Cruz, D. B. Hanback, P. Khazanie, D. Nam, P. Schuck, S. M. Selig, D. Van Ryk, M. A. Chaikin, and A. S. Fauci. 2002. Biochemical and biological characterization of a dodecameric CD4-Ig fusion protein: implications for therapeutic and vaccine strategies. J. Biol. Chem.277:11456-11464. 2. Arthos, J., K. C. Deen, M. A. Chaikin, J. A. Fornwald, G. Sathe, Q. J. Sattentau, P. R. Clapham, R. A. Weiss, J. S. McDougal, C. Pietropaolo, et al. 1989. Identification of the residues in human CD4 critical for the binding of HIV. Cell57:469-481. 3. Ashkenazi, A., L. G. Presta, S. A. Marsters, T. R. Camerato, K. A. Rosenthal, B. M. Fendly, and D. J. Capon. 1990. Mapping the CD4 binding site for human immunodeficiency virus by alanine-scanning mutagenesis. Proc. Natl. Acad. Sci. USA87:7150-7154. 4. Baba, M., O. Nishimura, N. Kanzaki, M. Okamoto, H. Sawada, Y. Iizawa, M. Shiraishi, Y. Aramaki, K. Okonogi, Y. Ogawa, K. Meguro, and M. Fujino. 1999. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl. Acad. Sci. USA96:5698-5703. 5. Brodsky, M. H., M. Warton, R. M. Myers, and D. R. Littman. 1990. Analysis of the site in CD4 that binds to the HIV envelope glycoprotein. J. Immunol.144:3078-3086.
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|