The Extracellular Domain of Herpes Simplex Virus gE Is Indispensable for Efficient Cell-to-Cell Spread: Evidence for gE/gI Receptors

Author:

Polcicova Katarina1,Goldsmith Kim1,Rainish Barb L.1,Wisner Todd W.1,Johnson David C.1

Affiliation:

1. Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239

Abstract

ABSTRACT Herpes simplex virus (HSV) spreads rapidly and efficiently within epithelial and neuronal tissues. The HSV glycoprotein heterodimer gE/gI plays a critical role in promoting cell-to-cell spread but does not obviously function during entry of extracellular virus into cells. Thus, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread. There was previous evidence that the large extracellular (ET) domains of gE/gI might be important in cell-to-cell spread. First, gE/gI extensively accumulates at cell junctions, consistent with being tethered there. Second, expression of gE/gI in trans interfered with HSV spread between epithelial cells. To directly test whether the gE ET domain was necessary for gE/gI to promote virus spread, a panel of gE mutants with small insertions in the ET domain was constructed. Cell-to-cell spread was reduced when insertions were made within either of two regions, residues 256 to 291 or 348 to 380. There was a strong correlation between loss of cell-to-cell spread function and binding of immunoglobulin. gE ET domain mutants 277, 291, and 348 bound gI, produced mature forms of gE that reached the cell surface, and were incorporated into virions yet produced plaques similar to gE null mutants. Moreover, all three mutants were highly restricted in spread within the corneal epithelium, in the case of mutant 277 to only 4 to 6% of the number of cells compared with wild-type HSV. Therefore, the ET domain of gE is indispensable for efficient cell-to-cell spread. These observations are consistent with our working hypothesis that gE/gI can bind extracellular ligands, so-called gE/gI receptors that are concentrated at epithelial cell junctions. This fits with similarities in structure and function of gE/gI and gD, which is a receptor binding protein.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference59 articles.

1. Adler, H., M. Messerle, and U. H. Koszinowski. 2003. Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev. Med. Virol.13:111-121.

2. Basu, S., G. Dubin, M. Basu, V. Nguyen, and H. M. Friedman. 1995. Characterization of regions of herpes simplex virus type 1 glycoprotein E involved in binding the Fc domain of monomeric IgG and in forming a complex with glycoprotein I. J. Immunol.154:260-267.

3. Basu, S., G. Dubin, T. Nagashunmugam, M. Basu, L. T. Goldstein, L. Wang, B. Weeks, and H. M. Friedman. 1997. Mapping regions of herpes simplex virus type 1 glycoprotein I required for formation of the viral Fc receptor for monomeric IgG. J. Immunol.158:209-215.

4. Induction of immunoglobulin G Fc receptors by recombinant vaccinia viruses expressing glycoproteins E and I of herpes simplex virus type 1

5. Cloning of the Human Cytomegalovirus (HCMV) Genome as an Infectious Bacterial Artificial Chromosome in Escherichia coli : a New Approach for Construction of HCMV Mutants

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3