Detailed Mapping of the Nuclear Export Signal in the Rous Sarcoma Virus Gag Protein

Author:

Scheifele Lisa Z.1,Ryan Eileen P.1,Parent Leslie J.12

Affiliation:

1. Departments of Medicine

2. Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033

Abstract

ABSTRACT The Rous sarcoma virus (RSV) Gag polyprotein undergoes transient nuclear trafficking as an intrinsic part of the virus assembly pathway. Nuclear export of Gag is crucial for the efficient production of viral particles and is accomplished through the action of a leptomycin B (LMB)-dependent nuclear export signal (NES) in the p10 domain (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc. Natl. Acad. Sci. USA 99: 3944-3949, 2002). We have now mapped the nuclear export activity to the C-terminal portion of the p10 sequence and identified the four hydrophobic amino acids within this region that comprise a leucine-rich NES. Alteration of these hydrophobic residues resulted in the accumulation of Gag proteins within the nucleus and a budding defect greater than that obtained with LMB treatment of cells expressing the wild-type Gag protein (Scheifele et al., Proc. Natl. Acad. Sci. USA 99: 3944-3949, 2002). In addition, export of Gag from the nucleus was found to be a rate-limiting step in virus-like particle production. Consistent with a role for the NES sequence in viral replication, this cluster of hydrophobic residues in p10 is conserved across a wide range of avian retroviruses. Furthermore, naturally occurring substitutions within this region in related viruses maintained nuclear export activity and remained sensitive to the activity of LMB. Using gain-of-function approaches, we found that the hydrophobic motif in p10 was sufficient to promote the nuclear export of a heterologous protein and was positionally independent within the Gag polyprotein. Finally, the export pathway was further defined by the ability of specific nucleoporin inhibitors to prevent the egress of Gag from the nucleus, thereby identifying additional cellular mediators of RSV replication.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3