Comparative Host Gene Transcription by Microarray Analysis Early after Infection of the Huh7 Cell Line by Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus 229E

Author:

Tang Bone S. F.1,Chan Kwok-hung1,Cheng Vincent C. C.1,Woo Patrick C. Y.1,Lau Susanna K. P.1,Lam Clarence C. K.2,Chan Tsun-leung3,Wu Alan K. L.1,Hung Ivan F. N.1,Leung Suet-yi3,Yuen Kwok-yung1

Affiliation:

1. Department of Microbiology, Centre of Infection and Immunology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong

2. Division of Haematology

3. Division of Anatomical Pathology, Department of Pathology, The University of Hong Kong, Hong Kong

Abstract

ABSTRACT The pathogenesis of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) at the cellular level is unclear. No human cell line was previously known to be susceptible to both SARS-CoV and other human coronaviruses. Huh7 cells were found to be susceptible to both SARS-CoV, associated with SARS, and human coronavirus 229E (HCoV-229E), usually associated with the common cold. Highly lytic and productive rates of infections within 48 h of inoculation were reproducible with both viruses. The early transcriptional profiles of host cell response to both types of infection at 2 and 4 h postinoculation were determined by using the Affymetrix HG-U133A microarray (about 22,000 genes). Much more perturbation of cellular gene transcription was observed after infection by SARS-CoV than after infection by HCoV-229E. Besides the upregulation of genes associated with apoptosis, which was exactly opposite to the previously reported effect of SARS-CoV in a colonic carcinoma cell line, genes related to inflammation, stress response, and procoagulation were also upregulated. These findings were confirmed by semiquantitative reverse transcription-PCR, reverse transcription-quantitative PCR for mRNA of genes, and immunoassays for some encoded proteins. These transcriptomal changes are compatible with the histological changes of pulmonary vasculitis and microvascular thrombosis in addition to the diffuse alveolar damage involving the pneumocytes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3