Biochemical Characterization of Rous Sarcoma Virus MA Protein Interaction with Membranes

Author:

Dalton Amanda K.1,Murray Paul S.2,Murray Diana2,Vogt Volker M.1

Affiliation:

1. Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853

2. Department of Microbiology and Immunology and Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10021

Abstract

ABSTRACT The MA domain of retroviral Gag proteins mediates association with the host cell membrane during assembly. The biochemical nature of this interaction is not well understood. We have used an in vitro flotation assay to directly measure Rous sarcoma virus (RSV) MA-membrane interaction in the absence of host cell factors. The association of purified MA and MA-containing proteins with liposomes of defined composition was electrostatic in nature and depended upon the presence of a biologically relevant concentration of negatively charged lipids. A mutant MA protein known to be unable to promote Gag membrane association and budding in vivo failed to bind to liposomes. These results were supported by computational modeling. The intrinsic affinity of RSV MA for negatively charged membranes appears insufficient to promote efficient plasma membrane binding during assembly. However, an artificially dimerized form of MA bound to liposomes by at least an order of magnitude more tightly than monomeric MA. This result suggests that the clustering of MA domains, via Gag-Gag interactions during virus assembly, drives membrane association in vivo.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference98 articles.

1. Alexandrov N. N. R. Nussinov and R. M. Zimmer. 1996. Fast protein fold recognition via sequence to structure alignment and contact potentials p. 53-72. In Pacific symposium on biocomputing 1996. World Scientific Publishing Co. River Edge N.J.

2. Aloia, R. C., H. Tian, and F. C. Jensen. 1993. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc. Natl. Acad. Sci. USA90:5181-5185.

3. Baker, N. A., and J. A. McCammon. 2003. Electrostatic interactions. Methods Biochem. Anal.44:427-440.

4. Functional chimeras of the Rous sarcoma virus and human immunodeficiency virus gag proteins

5. Ben-Tal, N., B. Honig, C. Miller, and S. McLaughlin. 1997. Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys. J.73:1717-1727.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3