The Cytoplasmic Tail Slows the Folding of Human Immunodeficiency Virus Type 1 Env from a Late Prebundle Configuration into the Six-Helix Bundle

Author:

Abrahamyan Levon G.1,Mkrtchyan Samvel R.1,Binley James2,Lu Min3,Melikyan Grigory B.1,Cohen Fredric S.1

Affiliation:

1. Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois

2. Torrey Pines Institute for Molecular Studies, San Diego, California

3. Department of Biochemistry, Weill Medical College of Cornell University, New York, New York

Abstract

ABSTRACT Effects of the cytoplasmic tail (CT) of human immunodeficiency virus type 1 Env on the process of membrane fusion were investigated. Full-length Env (wild type [WT]) and Env with its CT truncated (ΔCT) were expressed on cell surfaces, these cells were fused to target cells, and the inhibition of fusion by peptides that prevent Env from folding into a six-helix bundle conformation was measured. For both X4-tropic and R5-tropic Env proteins, ΔCT induced faster fusion kinetics than did the WT, and peptides were less effective at inhibiting ΔCT-induced fusion. We tested the hypothesis that the inhibitory peptides were less effective at inhibiting ΔCT-induced fusion because ΔCT folds more quickly into a six-helix bundle. Early and late intermediates of WT- and ΔCT-induced fusion were captured, and the ability of peptides to block fusion when added at the intermediate stages was quantified. When added at the early intermediate, the peptides were still less effective at inhibiting ΔCT-induced fusion but they were equally effective at preventing WT- and ΔCT-induced fusion when added at the late intermediate. We conclude that for both X4-tropic and R5-tropic Env proteins, the CT facilitates conformational changes that allow the trimeric coiled coil of prebundles to become optimally exposed. But once Env does favorably expose its coiled coil to inhibitory peptides, the CT hinders subsequent folding into a six-helix bundle. Because of this facilitation of maximal exposure and hindrance of bundle formation, the coiled coil is optimally exposed for a longer time for WT than for ΔCT. This accounts for the greater peptide inhibition of WT-induced fusion.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3