Herpes Simplex Virus Type 1 Latency-Associated Transcript Expression Protects Trigeminal Ganglion Neurons from Apoptosis

Author:

Branco Francisco J.1,Fraser Nigel W.1

Affiliation:

1. Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104

Abstract

ABSTRACT Upon infection of murine trigeminal ganglia with herpes simplex virus type 1 (HSV-1), an immune response is initiated resulting in significant infiltration of CD8 + T cells. Previous investigators have observed a lack of apoptosis in HSV-1 trigeminal ganglia even in the presence of cytotoxic immune cells. To determine the role of the latency-associated transcript (LAT) in inhibiting apoptosis, we examined mice during acute and latent infection with HSV-1 (strain 17 or a LAT-negative deletion mutant strain 17 N/H) by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and fluorescence-activated cell sorting (FACS). FACS analysis revealed CD8 + T cells in the trigeminal ganglia by day 7, with more being present in 17- than 17 N/H-infected trigeminal ganglia (6.22% versus 3.5%) and a decrease in number through day 30 (2.7% to 1.2%). To detect apoptotic CD8 + T cells, sections were assayed by TUNEL and stained for CD8 + T cells. By day 7, ∼10% of CD8 + T cells in both 17- and 17 N/H-infected trigeminal ganglia had undergone apoptosis. By day 30, 58% and 74% of all T cells had undergone apoptosis in 17- and 17 N/H-infected trigeminal ganglia, respectively. Furthermore, no HSV strain 17-infected trigeminal ganglion neurons were apoptotic, but 0.087% of 17ΔSty and 0.98% of 17 N/H-infected neurons were apoptotic. We conclude that the antiapoptotic effect of LAT appears to require the LAT promoter, with most of the antiapoptotic effect mapping within the StyI (+447) to the HpaI (+1667) region and a minor contribution from the upstream StyI (+76) to StyI (+447) region.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3