Activities of beta-lactam antibiotics against Escherichia coli strains producing extended-spectrum beta-lactamases

Author:

Jacoby G A1,Carreras I1

Affiliation:

1. Massachusetts General Hospital, Boston 02114.

Abstract

Seven extended-spectrum beta-lactamases related to TEM and four enzymes derived from SHV-1 were transferred to a common Escherichia coli host so that the activity of a variety of beta-lactams could be tested in a uniform genetic environment. For most derivatives, penicillinase activity was 10% or less than that of strains making TEM-1, TEM-2, or SHV-1 beta-lactamase, suggesting that reduced catalytic efficiency accompanied the broader substrate spectrum. Despite this deficit, resistance to aztreonam, carumonam, cefdinir, cefepime, cefixime, cefmenoxime, cefotaxime, cefotiam, cefpirome, cefpodoxime, ceftazidime, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime, and E1040 was enhanced. For strains producing TEM-type enzymes, however, MICs of carumonam, cefepime, cefmenoxime, cefotiam, cefpirome, and ceftibuten were 8 micrograms/ml or less. Susceptibilities of cefmetazole, cefotetan, cefoxitin, flomoxef, imipenem, meropenem, moxalactam, temocillin, FCE 22101, and Sch 34343 were unaffected. FCE 22101, imipenem, meropenem, and Sch 34343 were inhibitory for all strains at 1 microgram/ml or less. In E. coli an OmpF- porin mutation in combination with an extended-spectrum beta-lactamase enhanced resistance to many of these agents, but generally by only fourfold. Hyperproduction of chromosomal AmpC beta-lactamase increased resistance to 7-alpha-methoxy beta-lactams but not that to temocillin. When tested at 8 micrograms/ml, clavulanate was more potent than sulbactam or tazobactam in overcoming resistance to ampicillin, while cefoperazone-sulbactam was more active than ticarcillin-clavulanate or piperacillin-tazobactam, especially against TEM-type extended-spectrum beta-lactamases.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3