Discovery and Characterization of a Distinctive Exo-1,3/1,4-β-Glucanase from the Marine Bacterium Pseudoalteromonas sp. Strain BB1

Author:

Nakatani Yoshio1,Lamont Iain L.1,Cutfield John F.1

Affiliation:

1. Biochemistry Department, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand

Abstract

ABSTRACT Marine bacteria residing on local red, green, and brown seaweeds were screened for exo-1,3-β-glucanase (ExoP) activity. Of the 90 bacterial species isolated from 32 seaweeds, only one, a Pseudoalteromonas sp., was found to display such activity. It was isolated from a Durvillaea sp., a brown kelp known to contain significant amounts of the storage polysaccharide laminarin (1,3-β- d -glucan with some 1,6-β branching). Four chromatographic steps were utilized to purify the enzyme (ExoP). Chymotryptic digestion provided peptide sequences for primer design and subsequent gene cloning. The exoP gene coded for 840 amino acids and was located just 50 bp downstream from a putative lichenase (endo-1,3-1,4-β-glucanase) gene, suggesting possible cotranscription of these genes. Sequence comparisons revealed ExoP to be clustered within a group of bacterial glycosidases with high similarity to a group of glycoside hydrolase (GH3) plant enzymes, of which the barley exo-1,3/1,4-β-glucanase (ExoI) is the best characterized. The major difference between the bacterial and plant proteins is an extra 200- to 220-amino-acid extension at the C terminus of the former. This additional sequence does not correlate with any known functional domain, but ExoP was not active against laminarin when this region was removed. Production of recombinant ExoP allowed substrate specificity studies to be performed. The enzyme was found to possess similar levels of exoglucanase activity against both 1,4-β linkages and 1,3-β linkages, and so ExoP is designated an exo-1,3/1,4-β-exoglucanase, the first such bacterial enzyme to be characterized. This broader specificity could allow the enzyme to assist in digesting both cell wall cellulose and cytoplasmic laminarin.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3