Identification of Multiple Transcription Factors, HLF, FTF, and E4BP4, Controlling Hepatitis B Virus Enhancer II

Author:

Ishida Hisashi1,Ueda Keiji2,Ohkawa Kazuyoshi1,Kanazawa Yoshiyuki1,Hosui Atsushi1,Nakanishi Fumihiko1,Mita Eiji1,Kasahara Akinori3,Sasaki Yutaka4,Hori Masatsugu1,Hayashi Norio4

Affiliation:

1. Department of Internal Medicine and Therapeutics,1

2. Department of Microbiology,2

3. Department of General Medicine,3 and

4. Department of Molecular Therapeutics,4 Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan

Abstract

ABSTRACT Hepatitis B virus (HBV) enhancer II (EnII) is a hepatotropic cis element which is responsible for the hepatocyte-specific gene expression of HBV. Multiple transcription factors have been demonstrated to interact with this region. In this study, the region from HBV nucleotides (nt) 1640 to 1663 in EnII was demonstrated to be essential for enhancer activity and to be another target sequence of putative transcription factors. To elucidate the factors which bind to this region, we used a yeast one-hybrid screening system and cloned three transcription factors, HLF, FTF, and E4BP4, from a human adult liver cDNA library. All of these factors had binding affinity to the sequence from nt 1640 to 1663. Investigation of the effects of these factors on transcriptional regulation revealed that HLF and FTF had stimulatory activity on nt 1640 to 1663, whereas E4BP4 had a suppressing effect. FTF coordinately activated both 3.5-kb RNA and 2.4/2.1-kb RNA transcription in a transient transfection assay with an HBV expression vector. HLF, however, activated only 3.5-kb RNA transcription, and in primer extension analysis, HLF strongly stimulated the synthesis of pregenome RNA compared to precore RNA. Thus, FTF stimulated the activity of the second enhancer, while HLF stimulated the activity of the core upstream regulatory sequence, which affects only the core promoter, and had a dominant effect on the pregenome RNA synthesis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3