Nodavirus RNA Replication Protein A Induces Membrane Association of Genomic RNA

Author:

Van Wynsberghe Priscilla M.1,Chen Hau-Ren1,Ahlquist Paul12

Affiliation:

1. Institute for Molecular Virology

2. Howard Hughes Medical Institute, University of Wisconsin—Madison, Madison, Wisconsin 53706

Abstract

ABSTRACT Positive-strand RNA virus genome replication occurs in membrane-associated RNA replication complexes, whose assembly remains poorly understood. Here we show that prior to RNA replication, the multifunctional, transmembrane RNA replication protein A of the nodavirus flock house virus (FHV) recruits FHV genomic RNA1 to a membrane-associated state in both Drosophila melanogaster and Saccharomyces cerevisiae cells. Protein A has mitochondrial membrane-targeting, self-interaction, RNA-dependent RNA polymerase (RdRp), and RNA capping domains. In the absence of RdRp activity due to an active site mutation (A D692E ), protein A stimulated RNA1 accumulation by increasing RNA1 stability. Protein A D692E stimulated RNA1 accumulation in wild-type cells and in xrn1 yeast defective in decapped RNA decay, showing that increased RNA1 stability was not due to protein A-mediated RNA1 recapping. Increased RNA1 stability was closely linked with protein A-induced membrane association of the stabilized RNA and was highly selective for RNA1. Substantial N- and C-proximal regions of protein A were dispensable for these activities. However, increased RNA1 accumulation was eliminated by deleting protein A amino acids (aa) 1 to 370 but was restored completely by adding back the transmembrane domain (aa 1 to 35) and partially by adding back peripheral membrane association sequences in aa 36 to 370. Moreover, although RNA polymerase activity was not required, even small deletions in or around the RdRp domain abolished increased RNA1 accumulation. These and other results show that prior to negative-strand RNA synthesis, multiple domains of mitochondrially targeted protein A cooperate to selectively recruit FHV genomic RNA to membranes where RNA replication complexes form.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3