Regulation of Lactose Utilization Genes in Staphylococcus xylosus

Author:

Bassias Joannis1,Brückner Reinhold1

Affiliation:

1. Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany

Abstract

ABSTRACT The lactose utilization genes of Staphylococcus xylosus have been isolated and characterized. The system is comprised of two structural genes, lacP and lacH , encoding the lactose permease and the β-galactosidase proteins, respectively, and a regulatory gene, lacR , coding for an activator of the AraC/XylS family. The lactose utilization genes are divergently arranged, the lacPH genes being opposite to lacR . The lacPH genes are cotranscribed from one promoter in front of lacP , whereas lacR is transcribed from two promoters of different strengths. Lactose transport as well as β-galactosidase activity are inducible by the addition of lactose to the growth medium. Primer extension experiments demonstrated that regulation is achieved at the level of lacPH transcription initiation. Inducibility and efficient lacPH transcription are dependent on a functional lacR gene. Inactivation of lacR resulted in low and constitutive lacPH expression. Expression of lacR itself is practically constitutive, since transcription initiated at the major lacR promoter does not respond to the availability of lactose. Only the minor lacR promoter is lactose inducible. Apart from lactose-specific, LacR-dependent control, the lacPH promoter is also subject to carbon catabolite repression mediated by the catabolite control protein CcpA. When glucose is present in the growth medium, lacPH transcription initiation is reduced. Upon ccpA inactivation, repression at the lacPH promoter is relieved. Despite this loss of transcriptional regulation in the ccpA mutant strain, β-galactosidase activity is still reduced by glucose, suggesting another level of control.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3