Direct Spatial Control of Epac1 by Cyclic AMP

Author:

Ponsioen Bas12,Gloerich Martijn3,Ritsma Laila13,Rehmann Holger3,Bos Johannes L.3,Jalink Kees1

Affiliation:

1. Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands

2. Division of Cellular Biochemistry and Centre of Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands

3. Department of Physiological Chemistry, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands

Abstract

ABSTRACT Epac1 is a guanine nucleotide exchange factor (GEF) for the small G protein Rap and is directly activated by cyclic AMP (cAMP). Upon cAMP binding, Epac1 undergoes a conformational change that allows the interaction of its GEF domain with Rap, resulting in Rap activation and subsequent downstream effects, including integrin-mediated cell adhesion and cell-cell junction formation. Here, we report that cAMP also induces the translocation of Epac1 toward the plasma membrane. Combining high-resolution confocal fluorescence microscopy with total internal reflection fluorescence and fluorescent resonance energy transfer assays, we observed that Epac1 translocation is a rapid and reversible process. This dynamic redistribution of Epac1 requires both the cAMP-induced conformational change as well as the DEP domain. In line with its translocation, Epac1 activation induces Rap activation predominantly at the plasma membrane. We further show that the translocation of Epac1 enhances its ability to induce Rap-mediated cell adhesion. Thus, the regulation of Epac1-Rap signaling by cAMP includes both the release of Epac1 from autoinhibition and its recruitment to the plasma membrane.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of EPAC1 in chronic pain;Biochemistry and Biophysics Reports;2024-03

2. Membranes prime the RapGEF EPAC1 to transduce cAMP signaling;Nature Communications;2023-07-12

3. Epac as a tractable therapeutic target;European Journal of Pharmacology;2023-04

4. Cardiac β-Adrenoceptor Signaling: The New Insight on An Old Target in the Therapy of Cardiovascular Disease;International Journal of Drug Discovery and Pharmacology;2022-12-21

5. cAMP-Dependent Signaling and Ovarian Cancer;Cells;2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3