Author:
Griffin Carol E.,Hoke Jonathan M.,Samarakoon Upeka,Duan Junhui,Mu Jianbing,Ferdig Michael T.,Warhurst David C.,Cooper Roland A.
Abstract
ABSTRACTTheCinchonaalkaloids are quinoline aminoalcohols that occur as diastereomer pairs, typified by (−)-quinine and (+)-quinidine. The potency of (+)-isomers is greater than the (−)-isomersin vitroandin vivoagainstPlasmodium falciparummalaria parasites. They may act by the inhibition of heme crystallization within the parasite digestive vacuole in a manner similar to chloroquine. Earlier studies showed that a K76I mutation in the digestive vacuole-associated protein, PfCRT (P. falciparumchloroquine resistance transporter), reversed the normal potency order of quinine and quinidine towardP. falciparum. To further explore PfCRT-alkaloid interactions in the malaria parasite, we measured thein vitrosusceptibility of eight clonal lines ofP. falciparumderived from the 106/1 strain, each containing a uniquepfcrtallele, to fourCinchonastereoisomer pairs: quinine and quinidine; cinchonidine and cinchonine; hydroquinine and hydroquinidine; 9-epiquinine and 9-epiquinidine. Stereospecific potency of theCinchonaalkaloids was associated with changes in charge and hydrophobicity of mutable PfCRT amino acids. In isogenic chloroquine-resistant lines, the IC50ratio of (−)/(+) CA pairs correlated with side chain hydrophobicity of the position 76 residue. Second-site PfCRT mutations negated the K76I stereospecific effects: charge-change mutations C72R or Q352K/R restored potency patterns similar to the parent K76 line, while V369F increased susceptibility to the alkaloids and nullified stereospecific differences between alkaloid pairs. Interactions between key residues of the PfCRT channel/transporter with (−) and (+) alkaloids are stereospecifically determined, suggesting that PfCRT binding plays an important role in the antimalarial activity of quinine and otherCinchonaalkaloids.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献