Antibodies against Hemolysin and Cytotoxic Necrotizing Factor Type 1 (CNF1) Reduce Bladder Inflammation in a Mouse Model of Urinary Tract Infection with Toxigenic Uropathogenic Escherichia coli

Author:

Smith Mark A.1,Weingarten Rebecca A.1,Russo Lisa M.1,Ventura Christy L.1,O'Brien Alison D.1

Affiliation:

1. Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA

Abstract

ABSTRACT Uropathogenic Escherichia coli (UPEC) is the leading cause of cystitis. Cytotoxic necrotizing factor 1 (CNF1) and hemolysin (Hly) are toxins made by approximately 50% of UPEC isolates. CNF1 and Hly contribute to the robust inflammatory response in the bladders of mice challenged with UPEC strain CP9. We hypothesized that antibodies against CNF1 and/or Hly would reduce cystitis caused by CP9. To test this theory, we immunized female C3H/HeOuJ mice subcutaneously with a genetically derived Hly toxoid or genetically derived CNF1 toxoid plus sublethal doses of CNF1. We collected serum and observed increasing titers of specific and neutralizing antibodies against Hly or CNF1 over time. We challenged the mice intraurethrally with CP9 and euthanized them 24 h later. We observed 10-fold lower bacterial titers in the urine of Hly-immunized mice than in that of sham-immunized mice but no difference in kidney bacterial titers. Immunized mice also exhibited significantly less cystitis than sham-immunized mice. In CNF1-vaccinated mice, we detected neither a difference in urine or kidney bacterial titers nor a reduction in the severity of cystitis versus that of sham-immunized mice. We then passively administered an anti-CNF1 monoclonal antibody intraperitoneally to female C3H/HeOuJ mice prior to intraurethral challenge with CP9. Upon challenge, we noted no difference in colonization of the urine or kidney; however, cystitis was reduced significantly in mice treated with the anti-CNF1 antibody versus that in the bladders of mice given an isotype control antibody. Taken together, our data demonstrate that antibodies against CNF1 or Hly reduce the bladder pathology caused by UPEC.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3