Isolation and Characterization of Protoplasts from Saccharomyces rouxii

Author:

Arnold Wilfred N.1,Garrison Robert G.1

Affiliation:

1. Departments of Biochemistry and Microbiology, University of Kansas Medical Center, Kansas City, Kansas 66103, and Research Laboratory, Veterans Administration Hospital, Kansas City, Missouri 64128

Abstract

Cells of the osmotolerant yeast Saccharomyces rouxii were transformed to protoplasts in good yield (85%) by digesting cell walls with snail-gut enzyme in the presence of 10 mM dithioerythritol, 0.1 M sodium phosphate buffer (pH 6.8), and 2.0 M KCl. The requirement for 2.0 M KCl compares with that for S. bisporus var. mellis (another osmotolerant species) and contrasts with the 0.3 to 0.8 M KCl concentrations used in the preparation of most yeast protoplasts. Short digestions (60 min or less) produced mostly spheroplasts; longer incubations (90 min or more) yielded mostly protoplasts as judged by electron micrographs. These protoplasts could be transferred to 1.0 M KCl or 2.0 M sorbitol without lysing, but lysis was pronounced in 0.5 M KCl or 1.0 M mannitol and complete in 0.02 M KCl. Protoplasts were separated from isolated cell wall remnants and debris by centrifugation on a linear gradient of Ficoll 400 (35 to 17.5%, wt/vol) containing 2.0 M KCl. Both crude and fractionated protoplast preparations contained vesicles which were identified with the periplasmic bodies of whole cells. Some of the periplasmic bodies were connected to protoplasts by fine pedicels; others appeared free. Independent degeneracy of periplasmic bodies was occasionally observed. β-Fructofuranosidase (EC 3.2.1.26) activity is cryptic (physically) in cells of S. rouxii in contrast to the expressed enzyme (periplasmic space) of other Saccharomyces species. This enzyme remains cryptic in protoplast preparations of S. rouxii but is expressed upon lysis. The same specific activities were found per unit cell or protoplast. The possible association of the cryptic enzyme with periplasmic bodies is discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3