Genetic and Molecular Characterization of β-Lactamase-Negative Ampicillin-Resistant Haemophilus influenzae with Unusually High Resistance to Ampicillin

Author:

Kaczmarek Frank S.1,Gootz Thomas D.1,Dib-Hajj Fadia1,Shang Wenchi1,Hallowell Shawn2,Cronan Melissa2

Affiliation:

1. Department of Immunology and Infectious Disease

2. Department of Molecular Sciences, Pfizer Global Research and Development, Groton, Connecticut 06340

Abstract

ABSTRACT Previous studies with beta-lactamase-negative, ampicillin-resistant (BLNAR) Haemophilus influenzae from Japan, France, and North America indicate that mutations in ftsI encoding PBP3 confer ampicillin MICs of 1 to 4 μg/ml. Several BLNAR strains with ampicillin MICs of 4 to 16 μg/ml recently isolated from North America were studied. Pulsed-field gel electrophoresis identified 12 unique BLNAR strains; sequencing of their ftsI transpeptidase domains identified 1 group I and 11 group II mutants, as designated previously (K. Ubukata, Y. Shibasaki, K. Yamamoto, N. Chiba, K. Hasegawa, Y. Takeuchi, K. Sunakawa, M. Inoue, and M. Konno, Antimicrob. Agents Chemother. 45: 1693-1699, 2001). Geometric mean ampicillin MICs for several clinical isolates were 8 to 10.56 μg/ml. Replacement of the ftsI gene in H. influenzae Rd with the intact ftsI from several clinical isolates resulted in integrants with typical BLNAR geometric mean ampicillin MICs of 1.7 to 2.2 μg/ml. Cloning and purification of His-tagged PBP3 from three clinical BLNAR strains showed significantly reduced Bocillin binding compared to that of PBP3 from strain Rd. Based on these data, changes in PBP3 alone could not account for the high ampicillin MICs observed for these BLNAR isolates. In an effort to determine the presence of additional mechanism(s) of ampicillin resistance, sequencing of the transpeptidase regions of pbp1a , - 1b , and - 2 was performed. While numerous changes were observed compared to the sequences from Rd, no consistent pattern correlating with high-level ampicillin resistance was apparent. Additional analysis of the resistant BLNAR strains revealed frame shift insertions in acrR for all four high-level, ampicillin-resistant isolates. acrR was intact for all eight low-level ampicillin-resistant and four ampicillin-susceptible strains tested. A knockout of acrB made in one clinical isolate (initial mean ampicillin MIC of 10.3 μg/ml) lowered the ampicillin MIC to 3.67 μg/ml, typical for BLNAR strains. These studies illustrate that BLNAR strains with high ampicillin MICs exist that have combined resistance mechanisms in PBP3 and in the AcrAB efflux pump.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3