Differential Target Gene Activation by the Staphylococcus aureus Two-Component System saeRS

Author:

Mainiero Markus1,Goerke Christiane1,Geiger Tobias1,Gonser Christoph1,Herbert Silvia1,Wolz Christiane1

Affiliation:

1. Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany

Abstract

ABSTRACT The saePQRS system of Staphylococcus aureus controls the expression of major virulence factors and encodes a histidine kinase (SaeS), a response regulator (SaeR), a membrane protein (SaeQ), and a lipoprotein (SaeP). The widely used strain Newman is characterized by a single amino acid change in the sensory domain of SaeS (Pro18 in strain Newman [SaeS P ], compared with Leu18 in other strains [SaeS L ]). SaeS P determines activation of the class I sae target genes ( coa , fnbA , eap , sib , efb , fib , sae ), which are highly expressed in strain Newman. In contrast, class II target genes ( hla , hlb , cap ) are not sensitive to the SaeS polymorphism. The SaeS L allele ( saeS L ) is dominant over the SaeS P allele, as shown by single-copy integration of saePQRS L in strain Newman, which results in severe repression of class I target genes. The differential effect on target gene expression is explained by different requirements for SaeR phosphorylation. From an analysis of saeS deletion strains and strains with mutated SaeR phosphorylation sites, we concluded that a high level of SaeR phosphorylation is required for activation of class I target genes. However, a low level of SaeR phosphorylation, which can occur independent of SaeS, is sufficient to activate class II target genes. Using inducible saeRS constructs, we showed that the expression of both types of target genes is independent of the saeRS dosage and that the typical growth phase-dependent gene expression pattern is not driven by SaeRS.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3