Abstract
The infection of mouse L cells with vaccinia virus induced a rapid inhibition of cellular polypeptide synthesis and a diversion of protein synthesis to the exclusive production of viral polypeptides. This shutoff of cell-specific protein synthesis was achieved by a novel mechanism by which the virus induced the rapid degradation of cellular mRNAs. Concurrent with the degradation of cellular mRNA, the virus proceeds in the orderly temporal expression of its own genetic information. The effect of vaccinia virus infection upon two abundant L-cell mRNAs was assessed by using the highly conserved cDNA sequences that encode chicken beta-actin and rat alpha-tubulin. Hybridization analyses demonstrated that throughout infection there is a rapid and progressive degradation of both of these mRNAs. In fact, after 3 h of infection they are reduced to less than 50% of their concentration in uninfected L cells, and between 8 to 10 h they are almost entirely degraded. This observation explains in part the mechanism by which vaccinia virus inhibits host cell protein synthesis.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献