Control of Acid Resistance Pathways of Enterohemorrhagic Escherichia coli Strain EDL933 by PsrB, a Prophage-Encoded AraC-Like Regulator

Author:

Yang Ji,Russell Thomas W.,Hocking Dianna M.,Bender Jennifer K.,Srikhanta Yogitha N.,Tauschek Marija,Robins-Browne Roy M.

Abstract

EnterohemorrhagicEscherichia coli(EHEC) O157:H7 causes bloody diarrhea and hemolytic-uremic syndrome (HUS) and is the most prevalentE. coliserotype associated with food-borne illness worldwide. This pathogen is transmitted via the fecal-oral route and has a low infectious dose that has been estimated to be between 10 and 100 cells. We and others have previously identified three prophage-encoded AraC-like transcriptional regulators, PatE, PsrA, and PsrB in the EHEC O157:H7 EDL933 strain. Our analysis showed that PatE plays an important role in facilitating survival of EHEC under a number of acidic conditions, but the contribution of PsrA and PsrB to acid resistance (AR) was unknown. Here, we investigated the involvement of PsrA and PsrB in the survival ofE. coliO157:H7 in acid. Our results showed that PsrB, but not PsrA, enhanced the survival of strain EDL933 under various acidic conditions. Transcriptional analysis using promoter-lacZreporters and electrophoretic mobility shift assays demonstrated that PsrB activates transcription of thehdeAoperon, which encodes a major acid stress chaperone, by interacting with its promoter region. Furthermore, using a mouse model, we showed that expression of PsrB significantly enhanced the ability of strain EDL933 to overcome the acidic barrier of the mouse stomach. Taken together, our results indicate that EDL933 acquired enhanced acid tolerance via horizontally acquired regulatory genes encoding transcriptional regulators that activate its AR machinery.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference51 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3