The vaccinia virus B1R gene product is a serine/threonine protein kinase

Author:

Lin S1,Chen W1,Broyles S S1

Affiliation:

1. Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-6799.

Abstract

The nucleotide sequence of the vaccinia virus open reading frame B1 predicts a polypeptide with significant sequence similarity to the catalytic domain of known protein kinases. To determine whether the B1R polypeptide is a protein kinase, we have expressed it in bacteria as a fusion with glutathione S-transferase. Affinity-purified preparations of the fusion protein were found to undergo autophosphorylation and also phosphorylated the exogenous substrates casein and histone H1. Mutation of lysine 41 to glutamine within the conserved kinase catalytic domain II abrogated protein kinase activity on all three protein substrates, supporting the notion that the protein kinase activity is inherent to the B1R polypeptide. Casein and histone H1 were phosphorylated on serine and threonine residues. The B1R fusion protein was phosphorylated on a threonine residue(s) by an apparently intramolecular mechanism. The autophosphorylation reaction resulted in phosphorylation of the glutathione S-transferase portion of the fusion and not the protein kinase domain. The protein kinase activity of B1R was specific for ATP as the phosphate donor; GTP was not utilized to a detectable extent. Immunoblotting experiments with anti-B1R antiserum showed that the protein kinase is located in the virion particle. Chromatography of virion extracts resulted in separation of the B1R protein kinase from the bulk of the total protein kinase activity, indicating that multiple protein kinases are present in the virion particle and that B1R is distinct from the previously described vaccinia virus-associated protein kinase.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3