Vitronectin binds to Pneumocystis carinii and mediates organism attachment to cultured lung epithelial cells

Author:

Limper A H1,Standing J E1,Hoffman O A1,Castro M1,Neese L W1

Affiliation:

1. Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905.

Abstract

Pneumocystis carinii attaches to alveolar epithelial cells during the development of pneumonia. Adhesive proteins found within the alveolar space have been proposed to mediate P. carinii adherence to lung cells. Vitronectin (Vn), a 75-kDa glycoprotein present in the lower respiratory tract, has substantial cell-adhesive properties and might participate in the host-parasite interaction during P. carinii pneumonia. To address whether Vn binds to P. carinii, we studied the interaction of radiolabeled Vn with purified P. carinii organisms. Vn bound to P. carinii, occupying an estimated 5.47 x 10(5) binding sites per organism, with an affinity constant, Kd, of 4.24 x 10(-7) M. Interestingly, the interaction of Vn with P. carinii was not mediated through the Arg-Gly-Asp cell-adhesive domain of Vn. Addition of Arg-Gly-Asp-Ser (RGDS) peptides did not inhibit binding. In contrast, Vn binding to P. carinii was substantially inhibited by the addition of heparin or by digesting the organisms with heparitinase, suggesting that P. carinii may interact with the glycosaminoglycan-binding domain of Vn. To determine whether Vn might enhance P. carinii attachment to lung epithelial cells, we studied the binding of 51Cr-labeled P. carinii to cultured A549 lung cells. Addition of Vn resulted in significantly increased binding of P. carinii to A549 cells, whereas a neutralizing anti-Vn serum substantially reduced the binding of P. carinii to A549 cells. These data suggest that Vn binds to P. carinii and that Vn might provide an additional means by which P. carinii attaches to respiratory epithelial cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference45 articles.

1. Endothelial and epithelial adhesion molecules;Albelda S. M.;Am. J. Respir. Cell. Mol. Biol.,1991

2. New rat model of Pneumocystis carinii pneumonia;Bartlett M. S.;J. Clin. Microbiol.,1988

3. Cultivation of Pneumocystis cannii with WI-38 cells;Bartlett M. S.;J. Clin. Microbiol.,1979

4. Pneumocystis cannii organisms obtained from rats, ferrets, and mice are antigenically different;Bauer N. L.;Infect. Immun.,1993

5. Localization of host immunoglobulin G to the surface of Pneumocystis carinii;Blumenfeld W.;Infect. Immun.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3