Affiliation:
1. Department of Medical Microbiology and Immunology, University of South Florida College of Medicine, Tampa 33612.
Abstract
Macrophages can be activated by lipopolysaccharides (LPS) from gram-negative bacteria to evince a number of biological activities, including increased resistance to intracellular infection by opportunistic bacteria. In the present study, intraperitoneal injection of LPS into A/J mice activated peritoneal macrophages so that they resisted subsequent in vitro infection with Legionella pneumophila. Coculture of these macrophages with those from nontreated A/J mice converted the entire population of cells from permissive to nonpermissive. This effect did not appear to be mediated by soluble factors released from the LPS-treated macrophages, since the levels of interleukins-1 and -6 and tumor necrosis factor alpha produced by the macrophages were not found to be markedly elevated at the time when the macrophages from the LPS-treated mice were most effective in converting normal macrophages to nonpermissiveness. Furthermore, macrophages from mice injected intraperitoneally with either interferon or tumor necrosis factor alpha did not evince nonpermissiveness and also did not have the ability to convert normal spleen cells to nonpermissiveness. Polymyxin B, a known inactivator of LPS activity, did not inhibit the macrophages from the LPS-treated mice from inducing this resistance. It seemed unlikely that free LPS released from the macrophages mediated this effect. The results of this study thus showed that macrophages activated by LPS in vivo can evince nonpermissiveness for Legionella growth in vitro and also can induce macrophages from normal, permissive mice to become nonpermissive for Legionella growth in vitro.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献