Global Genomic Analysis of AlgU (σ E )-Dependent Promoters (Sigmulon) in Pseudomonas aeruginosa and Implications for Inflammatory Processes in Cystic Fibrosis

Author:

Firoved Aaron M.1,Boucher J. Cliff1,Deretic Vojo123

Affiliation:

1. Department of Microbiology and Immunology

2. Program in Cellular and Molecular Biology, University of Michigan Medical School Ann Arbor, Michigan 48109-0620

3. Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131

Abstract

ABSTRACT The conversion of Pseudomonas aeruginosa to the mucoid phenotype coincides with the establishment of chronic respiratory infections in cystic fibrosis (CF). A major pathway of conversion to mucoidy in clinical strains of P. aeruginosa is dependent upon activation of the alternative sigma factor AlgU ( P. aeruginosa σ E ). Here we initiated studies of AlgU-dependent global expression patterns in P. aeruginosa in order to assess whether additional genes, other than those involved in the production of the mucoid exopolysaccharide alginate, are turned on during conversion to mucoidy. Using genomic information and the consensus AlgU promoter sequence, we identified 35 potential AlgU (σ E ) promoter sites on the P. aeruginosa chromosome. Each candidate promoter was individually tested by reverse transcription and mRNA 5′-end mapping using RNA isolated from algU + and algU ::Tc r mutant cells. A total of 10 new AlgU-dependent promoters were identified, and the corresponding mRNA start sites were mapped. Two of the 10 newly identified AlgU promoters were upstream of predicted lipoprotein genes. Since bacterial lipoproteins have been implicated as inducers of inflammatory pathways, we tested whether lipopeptides corresponding to the products of the newly identified AlgU-dependent lipoprotein genes, lptA and lptB , had proinflammatory activity. In human peripheral blood monocyte-derived macrophages the peptides caused production of interleukin-8, a proinflammatory chemokine typically present at excessively high levels in the CF lung. Our studies show how genomic information can be used to uncover on a global scale the genes controlled by a given σ factor (collectively termed here sigmulon) using conventional molecular tools. In addition, our data suggest the existence of a previously unknown connection between conversion to mucoidy and expression of lipoproteins with potential proinflammatory activity. This link may be of significance for infections and inflammatory processes in CF.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3