Two Opines Control Conjugal Transfer of an Agrobacterium Plasmid by Regulating Expression of Separate Copies of the Quorum-Sensing Activator Gene traR

Author:

Oger Philippe1,Farrand Stephen K.12

Affiliation:

1. Departments of Crop Sciences

2. Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Abstract

ABSTRACT Conjugal transfer of Ti plasmids from Agrobacterium spp. is controlled by a hierarchical regulatory system designed to sense two environmental cues. One signal, a subset of the opines produced by crown gall tumors initiated on plants by the pathogen, serves to induce production of the second, an acyl-homoserine lactone quorum-sensing signal, the quormone, produced by the bacterium itself. This second signal activates TraR, and this transcriptional activator induces expression of the tra regulon. Opines control transfer because the traR gene is a member of an operon the expression of which is regulated by the conjugal opine. Among the Ti plasmid systems studied to date, only one of the two or more opine families produced by the associated tumor induces transfer. However, two chemically dissimilar opines, nopaline and agrocinopines A and B, induce transfer of the opine catabolic plasmid pAtK84b found in the nonpathogenic Agrobacterium radiobacter isolate K84. In this study we showed that this plasmid contains two copies of traR , and each is associated with a different opine-regulated operon. One copy, traR noc , is the last gene of the nox operon and was induced by nopaline but not by agrocinopines A and B. Mutating traR noc abolished induction of transfer by nopaline but not by the agrocinopines. A mutation in ocd , an upstream gene of the nox operon, abolished utilization of nopaline and also induction of transfer by this opine. The second copy, traR acc , is located in an operon of four genes and was induced by agrocinopines A and B but not by nopaline. Genetic analysis indicated that this gene is required for induction of transfer by agrocinopines A and B but not by nopaline. pAtK84b with mutations in both traR genes was not induced for transfer by either opine. However, expression of a traR gene in trans to this plasmid resulted in opine-independent transfer. The association of traR noc with nox is unique, but the operon containing traR acc is related to the arc operons of pTiC58 and pTiChry5, two Ti plasmids inducible for transfer by agrocinopines A-B and C-D, respectively. We conclude that pAtK84b codes for two independently functioning copies of traR , each regulated by a different opine, thus accounting for the activation of the transfer system of this plasmid by the two opine types.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3