Utilization of Dissolved Nitrogen by Heterotrophic Bacterioplankton: Effect of Substrate C/N Ratio

Author:

Jørgensen Niels O. G.1,Kroer Niels2,Coffin Richard B.3

Affiliation:

1. Microbiology Section, Department of Ecology and Molecular Biology, Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark

2. Department of Marine Ecology and Microbiology, National Environmental Research Institute, DK-4000 Roskilde, Denmark

3. Gulf Breeze Environmental Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561

Abstract

The significance of dissolved combined amino acids (DCAA), dissolved free amino acids (DFAA), and dissolved DNA (D-DNA) as sources of C and N for marine bacteria in batch cultures with variable substrate C/N ratios was studied. Glucose, ammonium, alanine, and phosphate were added to the cultures to produce C/N ratios of 5, 10, and 15 and to ensure that phosphorus was not limiting. Maximum bacterial particulate organic carbon production (after 25 h of incubation) was inversely correlated with the C/N ratio: with the addition of identical amounts of carbon, the levels of production were 9.0-, 10.0-, and 11.1-fold higher at C/N ratios of 15, 10, and 5, respectively, relative to an unamended control. The bacterial growth efficiency increased from 22% (control cultures) to 44 to 53% in the cultures with manipulated C/N ratios (C/N-manipulated cultures). Net carbon incorporation from DCAA, DFAA, and D-DNA supported on average 19, 4, and 3% (control cultures and cultures to which only phosphate was added [+P cultures]) and 5, 4, and 0.3% of the particulate organic carbon production (C/N-manipulated cultures), respectively. In the C/N-manipulated cultures, a 2.6- to 3.4-fold-higher level of incorporation of DCAA, relative to that in the control cultures, occurred. Incorporation of D-DNA increased with the substrate C/N ratio, suggesting that D-DNA mainly was a source of N to the bacteria. Organic N (DCAA, DFAA, and D-DNA) sustained 14 to 49% of the net bacterial N production. NH 4 + was the dominant N source and constituted 55 to 99% of the total N uptake. NO 3 - contributed up to 23% to the total N uptake but was released in two cultures. The studied N compounds sustained nearly all of the bacterial N demand. Our results show that the C/N ratio of dissolved organic matter available to bacteria has a significant influence on the incorporation of individual compounds like DCAA and D-DNA.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3