A Structure-Activity Study with Aryl Acylamidases

Author:

Villarreal David T.1,Turco Ronald F.2,Konopka Allan1

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392

2. Department of Agronomy, Purdue University, West Lafayette, Indiana 47907-1392

Abstract

We examined the relationship between chemical structure and biodegradability of acylanilide herbicides by using a set of model compounds. Four bacterial isolates (one gram-negative and three gram-positive) that grew on acetanilide were used. These soil isolates cleaved the amide bond of acetanilide via an aryl acylamidase reaction, producing aniline and the organic acid acetate. A series of acetanilide analogs with alkyl substitutions on the nitrogen atom or the aromatic ring were tested for their ability to induce aryl acylamidase activity and act as substrates for the enzyme. The substrate range, in general, was limited to those analogs not disubstituted in the ortho position of the benzene ring or which did not contain an alkyl group on the nitrogen atom. These same N-substituted compounds did not induce enzyme activity either, whereas the ortho -substituted compounds could in some cases.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3