Lead inhibition of enzyme synthesis in soil

Author:

Cole M A

Abstract

Addition of 2 mg of Pb2+/g of soil concident with or after amendment with starch or maltose resulted in 75 and 50% decreases in net synthesis of amylase and alpha-glucosidase, respectively. Invertase synthesis in sucrose-amended soil was transiently reduced after Pb2+ addition. Amylase activity was several times less sensitive to Pb2+ inhibition than was enzyme synthesis. In most cases, the rate of enzyme synthesis returned to control (Pb2+) values 24 to 48 h after the addition of Pb. The decrease in amylase synthesis was paralleled by a decrease in the number of Pb-sensitive, amylase-producing bacteria, whereas recovery of synthesis was associated with an increase in the number of amylase-producing bacteria. The degree of inhibition of enzyme synthesis was related to the quantity of Pb added and to the specific form of lead. PbSO4 decreased amylase synthesis at concentrations of 10.2 mg of Pb2+/g of soil or more, whereas PbO did not inhibit amylase synthesis at 13 mg of Pb2+/g of soil. Lead acetate, PbCl2, and PbS reduced amylase synthesis at total Pb2+ concentrations of 0.45 mg of Pb2+/g of soil or higher. The results indicated that lead is a potent but somewhat selective inhibitor of enzyme synthesis in soil, and that highly insoluble lead compounds, such as PbS, may be potent modifiers of soil biological activity.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference22 articles.

1. Comparative toxicity of heavy metals for certain microorganisms;Avakyan Z. A.;Mikrobiologiya,1967

2. Kinetics of ion exchange in soil organic matter. II. Ion exchange during continuous addition of Pb 2+ ions to humic acid and peat;Bunzl K.;J. Soil Sci.,1974

3. Lead accumulation in roadside soil and grass;Chow T. J.;Nature (London),1970

4. Relation of land use to some degradative enzymatic activities of soil bacteria;Hankin L.;Soil Sci.,1974

5. Nature of lead in automative exhaust gas;Hirschler D. A.;Arch. Environ. Health,1964

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3