Shear-reversible clusters of HIV-1 in solution: stabilized by antibodies, dispersed by mucin

Author:

Ogundiran Ayobami I.1ORCID,Chang Tzu-Lan1,Ivanov Andrey2,Kumari Namita23,Nekhai Sergei23ORCID,Chandran Preethi L.1ORCID

Affiliation:

1. Department of Chemical Engineering, College of Engineering and Architecture, Howard University , Washington, DC, USA

2. Center for Sickle Cell Disease, College of Medicine, Howard University , Washington, DC, USA

3. Department of Medicine, College of Medicine, Howard University , Washington, DC, USA

Abstract

ABSTRACT HIV-1 has eluded vaccine therapy for the past 40 years. The virus mutates rapidly and is protected by a shifting glycan shield of mannose sugars, which has hindered the broad neutralization of the virus by antibodies (Abs). Studies have shown that mannose residues are self-adhesive, but it is not known if these adhesions drive HIV-1 to aggregate in solution, further complicating Ab neutralization. The behavior of HIV-1 in culture media was monitored using Dynamic Light Scattering and complementary atomic force microscopy (AFM) imaging in the presence of anti-gp120 Abs, lectins, mannosidase, and mucin. After accounting for the serum contribution from the culture media, HIV-1 was found to be diffusing in solution in 400–700 nm clusters. These clusters could be sheared into single virus particles by filtration, but the dispersed particles clustered back within a short time frame. Sample preparation prior to AFM and transmission electron microscopy (TEM) imaging appears to disperse clusters, but the clusters become visible in AFM when they are stabilized by Abs in solution. The clustered form of the virus appears to restrict access of Abs, lectins, and glycosidases to surfaces within the cluster. Mannosidase treatment following virus dispersion by filtration prevented clustering, suggesting that the mannose glycan shield is involved in cluster formation. Dispersed HIV-1 particles that were bound by Abs did not re-cluster back. Free mucin molecules (porcine gastric mucin) effectively dispersed HIV-1 clusters, even those stabilized by Abs. HIV-1-loaded mucin dried on the AFM surface with a fern-like fractal pattern, similar to that seen clinically in cervical mucin during the more penetrable ovulation stage. IMPORTANCE The phenomenon of reversible clustering is expected to further nuance HIV immune stealth because virus surfaces can escape interaction with antibodies (Abs) by hiding temporarily within clusters. It is well known that mucin reduces HIV virulence, and the current perspective is that mucin aggregates HIV-1 to reduce infections. Our findings, however, suggest that mucin is dispersing HIV clusters. The study proposes a new paradigm for how HIV-1 may broadly evade Ab recognition with reversible clustering and why mucin effectively neutralizes HIV-1.

Funder

National Science Foundation

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3