Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry of Lipopeptide Biosurfactants in Whole Cells and Culture Filtrates of Bacillus subtilis C-1 Isolated from Petroleum Sludge

Author:

Vater Joachim1,Kablitz Bärbel1,Wilde Christopher1,Franke Peter2,Mehta Neena3,Cameotra Swaranjit Singh3

Affiliation:

1. Institut für Chemie, Arbeitsgruppe Biochemie und Molekulare Biologie, Technische Universität Berlin, D-10587 Berlin

2. Institut für Biochemie, Freie Universität Berlin, D-14195 Berlin, Germany

3. Institute of Microbial Technology, Sector 39A, Chandigarh-160 036, India

Abstract

ABSTRACT An innovative method was developed for rapid sensitive detection and efficient structural characterization of lipopeptide biosurfactants by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry by using whole microbial cells and crude culture filtrates as targets in combination with surface tension measurements. This was done for a bacterial strain that was isolated from petroleum sludge and efficiently produces biosurfactants. This organism was identified by using biochemical, physiological, and genetic parameters as a Bacillus subtilis strain, designated B. subtilis C-1. This assignment was supported by a mass spectrometric investigation of the secondary metabolite spectrum determined by whole-cell MALDI-TOF mass spectrometry, which revealed three lipopeptide complexes, the surfactins, the iturins, and the fengycins, which are well-known biosurfactants produced by B. subtilis strains. These compounds were structurally characterized by in situ structure analysis by using postsource decay MALDI-TOF mass spectrometry. The isoforms were separated by miniaturized high-resolution reversed-phase high-performance liquid chromatography for mass spectrometric characterization. Iturin compounds which contain unusual fatty acid components were detected.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3