Effect of Cold Starvation, Acid Stress, and Nutrients on Metabolic Activity of Helicobacter pylori

Author:

Nilsson Hans-Olof1,Blom Jens2,Al-Soud Waleed Abu1,Ljungh Åsa1,Andersen Leif P.3,Wadström Torkel1

Affiliation:

1. Department of Medical Microbiology, Dermatology and Infection, Lund University, SE-223 62 Lund, Sweden

2. Laboratory for Electron Microscopy, State Serum Institute

3. Department of Microbiology, Rigshospitalet, Copenhagen, Denmark

Abstract

ABSTRACT Helicobacter pylori can transform, in vivo as well as in vitro, from dividing spiral-shaped forms into nonculturable coccoids, with intermediate forms called U forms. The importance of nonculturable coccoid forms of H. pylori in disease transmission and antibiotic treatment failures is unclear. Metabolic activities of actively growing as well as nonculturable H. pylori were investigated by comparing the concentrations of cellular ATP and total RNA, gene expression, presence of cytoplasmic polyphosphate granules and iron inclusions, and cellular morphology during extended broth culture and nutritional cold starvation. In addition, the effect of exposing broth-cultured or cold-starved cells to a nutrient-rich or acidic environment on the metabolic activities was investigated. ATP was detectable up to 14 days and for at least 25 days after transformation from the spiral form to the coccoid form or U form in broth-cultured and cold-starved cells, respectively. mRNAs of VacA, a 26-kDa protein, and urease A were detected by using reverse transcription-PCR in cells cultured for 2 months in broth or cold starved for at least 28 months. The ATP concentration was not affected during exposure to fresh or acidified broth, while 4- to 12-h exposures of nonculturable cells to lysed human erythrocytes increased cellular ATP 12- to 150-fold. Incubation of nonculturable cold-starved cells with an erythrocyte lysate increased total RNA expression and ureA mRNA transcription as measured by quantitative real-time reverse transcription-PCR. Furthermore, the number of structurally intact starved coccoids containing polyphosphate granules increased almost fourfold ( P = 0.0022) under the same conditions. In conclusion, a specific environmental stimulus can induce ATP, polyphosphate, and RNA metabolism in nonculturable H. pylori , indicating viability of such morphological forms.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3