Engineering of Primary Carbon Metabolism for Improved Antibiotic Production in Streptomyces lividans

Author:

Butler Michael J.1,Bruheim Per2,Jovetic Srdjan3,Marinelli Flavia3,Postma Pieter W.4,Bibb Mervyn J.1

Affiliation:

1. Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom

2. Department of Biotechnology, Norwegian University of Science and Technology, N7491 Trondheim, Norway

3. Biosearch Italia S.p.A., 21040 Gerenzano (VA), Italy

4. E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, 1018WS Amsterdam, The Netherlands

Abstract

ABSTRACT Deletions were made in Streptomyces lividans in either of two genes ( zwf1 and zwf2 ) encoding isozymes of glucose-6-phosphate dehydrogenase, the first enzyme in the oxidative pentose phosphate pathway (PPP). Each mutation reduced the level of Zwf activity to approximately one-half that observed in the wild-type strain. When the mutants were transformed with multicopy plasmids carrying the pathway-specific transcriptional activator genes for either the actinorhodin (ACT) or undecylprodigiosin (RED) biosynthetic pathway, they produced higher levels of antibiotic than the corresponding wild-type control strains. The presumed lower flux of carbon through the PPP in each of the Δ zwf mutants may allow more efficient glucose utilization via glycolysis, resulting in higher levels of antibiotic production. This appears to occur without lowering the concentration of NADPH (the major biochemical product of the oxidative PPP activity) to a level that would limit antibiotic biosynthesis. Consistent with this hypothesis, deletion of the gene ( devB ) encoding the enzyme that catalyzes the next step in the oxidative PPP (6-phosphogluconolactonase) also resulted in increased antibiotic production. However, deletion of both zwf genes from the devB mutant resulted in reduced levels of ACT and RED production, suggesting that some of the NADPH made by the PPP is utilized, directly or indirectly, for antibiotic biosynthesis. Although applied here to the model antibiotics ACT and RED, such mutations may prove to be useful for improving the yield of commercially important secondary metabolites.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3