The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection

Author:

Stecher Bärbel12

Affiliation:

1. Max von Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany

2. German Center for Infection Research (DZIF), Partner Site LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany

Abstract

ABSTRACT The healthy human intestine is colonized by as many as 10 14 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota . The microbiota's various bacterial members engage in a physiological network of cooperation and competition within several layers of complexity. Within the last 10 years, technological progress in the field of next-generation sequencing technologies has tremendously advanced our understanding of the wide variety of physiological and pathological processes that are influenced by the commensal microbiota ( 1 , 2 ). An increasing number of human disease conditions, such as inflammatory bowel diseases (IBD), type 2 diabetes, obesity, allergies and colorectal cancer are linked with altered microbiota composition ( 3 ). Moreover, a clearer picture is emerging of the composition of the human microbiota in healthy individuals, its variability over time and between different persons and how the microbiota is shaped by environmental factors (i.e., diet) and the host's genetic background ( 4 ). A general feature of a normal, healthy gut microbiota can generate conditions in the gut that disfavor colonization of enteric pathogens. This is termed colonization-resistance (CR). Upon disturbance of the microbiota, CR can be transiently disrupted, and pathogens can gain the opportunity to grow to high levels. This disruption can be caused by exposure to antibiotics ( 5 , 6 ), changes in diet ( 7 , 8 ), application of probiotics and drugs ( 9 ), and a variety of diseases ( 3 ). Breakdown of CR can boost colonization by intrinsic pathogens or increase susceptibility to infections ( 10 ). One consequence of pathogen expansion is the triggering of inflammatory host responses and pathogen-mediated disease. Interestingly, human enteric pathogens are part of a small group of bacterial families that belong to the Proteobacteria: the Enterobacteriaceae ( E. coli , Yersinia spp., Salmonella spp., Shigella spp.), the Vibrionaceae ( Vibrio cholerae ) and the Campylobacteriaceae ( Campylobacter spp.). In general, members of these families (be it commensals or pathogens) only constitute a minority of the intestinal microbiota. However, proteobacterial “blooms” are a characteristic trait of an abnormal microbiota such as in the course of antibiotic therapy, dietary changes or inflammation ( 11 ). It has become clear that the gut microbiota not only plays a major role in priming and regulating mucosal and systemic immunity, but that the immune system also contributes to host control over microbiota composition. These two ways of mutual communication between the microbiota and the immune system were coined as “outside-in” and “inside-out,” respectively ( 12 ). The significance of those interactions for human health is particularly evident in Crohn's disease (CD) and Ulcerative Colitis (UC). The symptoms of these recurrent, chronic types of gut inflammation are caused by an excessive immune response against one's own commensal microbiota ( 13 ). It is assumed that deregulated immune responses can be caused by a genetic predisposition, leading to, for example, the impairment of intestinal barrier function or disruption of mucosal T-cell homeostasis. In CD or UC patients, an abnormally composed microbiota, referred to as “dysbiosis,” is commonly observed (discussed later). This is often characterized by an increased relative abundance of facultative anaerobic bacteria (e.g., Enterobacteriaeceae , Bacilli) and, at the same time, depletion of obligate anaerobic bacteria of the classes Bacteroidia and Clostridia. So far, it is unclear whether dysbiosis is a cause or a consequence of inflammatory bowel disease (IBD). In fact, both scenarios are equally conceivable. Recent work suggests that inflammatory immune responses in the gut (both IBD and pathogen-induced) can alter the gut luminal milieu in a way that favors dysbiosis ( 14 ). In this chapter, I present a survey on our current state of understanding of the characteristics and mechanisms underlying gut inflammation-associated dysbiosis. The role of dysbiosis in enteric infections and human IBD is discussed. In addition, I will focus on competition of enteric pathogens and the gut microbiota in the inflamed gut and the role of dysbiotic microbiota alterations (e.g., “ Enterobacterial blooms” ( 11 )) for the evolution of pathogenicity.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3