Integration, Regulation, and Long-Term Stability of R2 Retrotransposons

Author:

Eickbush Thomas H.1,Eickbush Danna G.1

Affiliation:

1. Department of Biology, University of Rochester, Rochester, NY 14627

Abstract

ABSTRACT R2 elements are sequence specific non-LTR retrotransposons that exclusively insert in the 28S rRNA genes of animals. R2s encode an endonuclease that cleaves the insertion site and a reverse transcriptase that uses the cleaved DNA to prime reverse transcription of the R2 transcript, a process termed target primed reverse transcription. Additional unusual properties of the reverse transcriptase as well as DNA and RNA binding domains of the R2 encoded protein have been characterized. R2 expression is through co-transcription with the 28S gene and self-cleavage by a ribozyme encoded at the R2 5′ end. Studies in laboratory stocks and natural populations of Drosophila suggest that R2 expression is tied to the distribution of R2-inserted units within the rDNA locus. Most individuals have no R2 expression because only a small fraction of their rRNA genes need to be active, and a contiguous region of the locus free of R2 insertions can be selected for activation. However, if the R2-free region is not large enough to produce sufficient rRNA, flanking units - including those inserted with R2 - must be activated. Finally, R2 copies rapidly turnover within the rDNA locus, yet R2 has been vertically maintained in animal lineages for hundreds of millions of years. The key to this stability is R2's ability to remain dormant in rDNA units outside the transcribed regions for generations until the stochastic nature of the crossovers that drive the concerted evolution of the rDNA locus inevitably reshuffle the inserted and uninserted units, resulting in transcription of the R2-inserted units.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3