Mariner and the ITm Superfamily of Transposons

Author:

Tellier Michael1,Bouuaert Corentin Claeys1,Chalmers Ronald1

Affiliation:

1. School of Life Sciences, University of Nottingham, QMC, Nottingham, NG7 2UH, UK

Abstract

ABSTRACT The IS630-Tc1-mariner (ITm) family of transposons is one of the most widespread in nature. The phylogenetic distribution of its members shows that they do not persist for long in a given lineage, but rely on frequent horizontal transfer to new hosts. Although they are primarily selfish genomic-parasites, ITm transposons contribute to the evolution of their hosts because they generate variation and contribute protein domains and regulatory regions. Here we review the molecular mechanism of ITm transposition and its regulation. We focus mostly on the mariner elements, which are understood in the greatest detail owing to in vitro reconstitution and structural analysis. Nevertheless, the most important characteristics are probably shared across the grouping. Members of the ITm family are mobilized by a cut-and-paste mechanism and integrate at 5′-TA dinucleotide target sites. The elements encode a single transposase protein with an N-terminal DNA-binding domain and a C-terminal catalytic domain. The phosphoryl-transferase reactions during the DNA-strand breaking and joining reactions are performed by the two metal-ion mechanism. The metal ions are coordinated by three or four acidic amino acid residues located within an RNase H-like structural fold. Although all of the strand breaking and joining events at a given transposon end are performed by a single molecule of transposase, the reaction is coordinated by close communication between transpososome components. During transpososome assembly, transposase dimers compete for free transposon ends. This helps to protect the host by dampening an otherwise exponential increase in the rate of transposition as the copy number increases.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3