Emergence of Influenza Viruses and Crossing the Species Barrier

Author:

Koçer Zeynep A.1,Jones Jeremy C.1,Webster Robert G.1

Affiliation:

1. Department of Infectious Diseases, Division of Virology, St. Jude Children’s Research Hospital, Memphis, TN 38105

Abstract

ABSTRACT Influenza A viruses are zoonotic pathogens that infect a variety of host species including wild aquatic birds, domestic poultry, and a limited number of mammals including humans. The error-prone nature of the virus's replication machinery and its ability to transmit among multiple hosts lead to generation of novel virus variants with altered pathogenicity and virulence. Spatial, molecular, and physiological barriers inhibit cross-species infections, particularly in the case of human infection with avian viruses. Pigs are proposed as a mixing vessel that facilitates movement of avian viruses from the wild bird reservoir into humans. However, the past decade has witnessed the emergence of highly pathogenic and virulent avian H5 and H7 viruses that have breached these barriers, bypassed the pig intermediate host, and infected humans with a high mortality rate, but have not established human-to-human transmissible lineages. Because influenza viruses pose a significant risk to both human and animal health, it is becoming increasingly important to attempt to predict their identities and pathogenic potential before their widespread emergence. Surveillance of the wild bird reservoir, molecular characterization and documentation of currently circulating viruses in humans and animals, and a comprehensive risk assessment analysis of individual isolates should remain a high priority. Such efforts are critical to the pursuit of prevention and control strategies, including vaccine development and assessment of antiviral susceptibility, that will have a direct impact on the well-being of humans and animals worldwide.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3