Bacterial Evasion of Host Antimicrobial Peptide Defenses

Author:

Cole Jason N.123,Nizet Victor145

Affiliation:

1. Department of Pediatrics, University of California San Diego, La Jolla, CA 92093

2. School of Chemistry and Molecular Biosciences

3. Australian Infectious Diseases Research Center, University of Queensland, St Lucia, Queensland 4072, Australia

4. Skaggs School of Pharmacy and Pharmaceutical Sciences

5. Center for Immunity, Infection & Inflammation, University of California San Diego, La Jolla, CA 92093

Abstract

ABSTRACT Antimicrobial peptides (AMPs), also known as host defense peptides, are small naturally occurring microbicidal molecules produced by the host innate immune response that function as a first line of defense to kill pathogenic microorganisms by inducing deleterious cell membrane damage. AMPs also possess signaling and chemoattractant activities and can modulate the innate immune response to enhance protective immunity or suppress inflammation. Human pathogens have evolved defense molecules and strategies to counter and survive the AMPs released by host immune cells such as neutrophils and macrophages. Here, we review the various mechanisms used by human bacterial pathogens to resist AMP-mediated killing, including surface charge modification, active efflux, alteration of membrane fluidity, inactivation by proteolytic digestion, and entrapment by surface proteins and polysaccharides. Enhanced understanding of AMP resistance at the molecular level may offer insight into the mechanisms of bacterial pathogenesis and augment the discovery of novel therapeutic targets and drug design for the treatment of recalcitrant multidrug-resistant bacterial infections. Abbreviations: ABC, adenosine triphosphate-binding cassette; AMPs, antimicrobial peptides; l -Ara4N, 4-amino-4-deoxy- l -arabinose; GAC, group A carbohydrate; GAS, group A Streptococcus ; GBS, group B Streptococcus ; GlcNAc, N -acetylglucosamine; HBD 1-6, human β-defensin 1-6; HD 5-6, human α-defensin 5-6; HNP 1-4, human neutrophil peptide 1-4; LL-37, human cathelicidin; LOS, lipooligosaccharide; LPS, lipopolysaccharide; LTA, lipoteichoic acid; mCRAMP, murine cathelicidin-related antimicrobial peptide; MprF, membrane protein multipeptide resistance factor; NETs, neutrophil extracellular traps; pEtN, phosphoethanolamine; PG, phosphatidylglycerol; Sap, sensitive to antimicrobial peptides ABC importer; SK, staphylokinase; TA, teichoic acid; TLR, toll-like receptor; WT, wild-type.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3