Mating-type Gene Switching in Saccharomyces cerevisiae

Author:

Lee Cheng-Sheng1,Haber James E.1

Affiliation:

1. Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA 02454-9110

Abstract

ABSTRACT The budding yeast Saccharomyces cerevisiae has two alternative mating types designated MAT a and MAT α. These are distinguished by about 700 bp of unique sequences, Y a or Yα, including divergent promoter sequences and part of the open reading frames of genes that regulate mating phenotype. Homothallic budding yeast, carrying an active HO endonuclease gene, HO , can switch mating type through a recombination process known as gene conversion, in which a site-specific double-strand break (DSB) created immediately adjacent to the Y region results in replacement of the Y sequences with a copy of the opposite mating type information, which is harbored in one of two heterochromatic donor loci, HML α or HMR a . HO gene expression is tightly regulated to ensure that only half of the cells in a lineage switch to the opposite MAT allele, thus promoting conjugation and diploid formation. Study of the silencing of these loci has provided a great deal of information about the role of the Sir2 histone deacetylase and its associated Sir3 and Sir4 proteins in creating heterochromatic regions. MAT switching has been examined in great detail to learn about the steps in homologous recombination. MAT switching is remarkably directional, with MAT a recombining preferentially with HML α and MAT α using HMR a . Donor preference is controlled by a cis -acting recombination enhancer located near HML . RE is turned off in MAT α cells but in MAT a binds multiple copies of the Fkh1 transcription factor whose forkhead-associated phosphothreonine binding domain localizes at the DSB, bringing HML into conjunction with MAT a .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3