RAS/Cyclic AMP and Transcription Factor Msn2 Regulate Mating and Mating-Type Switching in the Yeast Kluyveromyces lactis

Author:

Barsoum E.1,Rajaei N.1,Åström S. U.1

Affiliation:

1. Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden

Abstract

ABSTRACT In response to harsh environmental conditions, ascomycetes produce stress-resistant spores to promote survival. As sporulation requires a diploid DNA content, species with a haploid lifestyle, such as Kluyveromyces lactis , first induce mating in response to stress. In K. lactis , mating and mating-type switching are induced by the DNA-binding protein Mts1. Mts1 expression is known to be upregulated by nutrient limitation, but the mechanism is unknown. We show that a ras2 mutation results in a hyperswitching phenotype. In contrast, strains lacking the phosphodiesterase Pde2 had lower switching rates compared to that of the wild type (WT). As Ras2 promotes cyclic AMP (cAMP) production and Pde2 degrades cAMP, these data suggest that low cAMP levels induce switching. Because the MTS1 regulatory region contains several Msn2 binding sites and Msn2 is a transcription factor that is activated by low cAMP levels, we investigated if Msn2 regulates MTS1 transcription. Consistently with this idea, an msn2 mutant strain displayed lower switching rates than the WT strain. The transcription of MTS1 is highly induced in the ras2 mutant strain. In contrast, an msn2 ras2 double mutant strain displays WT levels of the MTS1 transcript, showing that Msn2 is a critical inducer of MTS1 transcription. Strains lacking Msn2 and Pde2 also exhibit mating defects that can be complemented by the ectopic expression of Mts1. Finally, we show that MTS1 is subjected to negative autoregulation, presumably adding robustness to the mating and switching responses. We suggest a model in which Ras2/cAMP/Msn2 mediates the stress-induced mating and mating-type switching responses in K. lactis .

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3