Genetic and Structural Analysis of the Bacteroides Conjugative Transposon CTn341

Author:

Bacic M.1,Parker A. C.1,Stagg J.1,Whitley H. P.1,Wells W. G.1,Jacob L. A.1,Smith C. J.1

Affiliation:

1. Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina

Abstract

ABSTRACT The genetic structure and functional organization of a Bacteroides conjugative transposon (CTn), CTn341, were determined. CTn341 was originally isolated from a tetracycline-resistant clinical isolate of Bacteroides vulgatus . The element was 51,993 bp long, which included a 5-bp coupling sequence that linked the transposon ends in the circular form. There were 46 genes, and the corresponding gene products fell into three major functional groups: DNA metabolism, regulation and antibiotic resistance, and conjugation. The G+C content and codon usage observed in the functional groups suggested that the groups belong to different genetic lineages, indicating that CTn341 is a composite, modular element. Mutational analysis of genes representing the different functional groups provided evidence for the gene assignments and showed that the basic conjugation and excision genes are conserved among Bacteroides spp. A group IIA1 intron, designated B.f.I1, was found to be inserted into the bmhA methylase gene. Reverse transcriptase PCR analysis of CTn341 RNA showed that B.fr.I1 was functional and was spliced out of the bmhA gene. Six related CTn-like elements were found in the genome sequences of Bacteroides fragilis NCTC9343 and Bacteroides thetaiotaomicron VPI5482. The putative elements were similar to CTn341 primarily in the tra and mob regions and in the exc gene, and several appeared to contain intron elements. Our data provide the first reported sequence for a complete Bacteroides CTn, and they should be of considerable benefit to further functional and genetic analyses of antibiotic resistance elements and genome evolution in Bacteroides .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3