Characterization and Comparative Genomic Analysis of a Novel Bacteriophage, SFP10, Simultaneously Inhibiting both Salmonella enterica and Escherichia coli O157:H7

Author:

Park Minjung,Lee Ju-Hoon,Shin Hakdong,Kim Minsik,Choi Jeongjoon,Kang Dong-Hyun,Heu Sunggi,Ryu Sangryeol

Abstract

ABSTRACTSalmonella entericaandEscherichia coliO157:H7 are major food-borne pathogens causing serious illness. Phage SFP10, which revealed effective infection of bothS. entericaandE. coliO157:H7, was isolated and characterized. SFP10 contains a 158-kb double-stranded DNA genome belonging to the Vi01 phage-like familyMyoviridae.In vitroadsorption assays showed that the adsorption constant rates to bothSalmonella entericaserovar Typhimurium andE. coliO157:H7 were 2.50 × 10−8ml/min and 1.91 × 10−8ml/min, respectively. One-step growth analysis revealed that SFP10 has a shorter latent period (25 min) and a larger burst size (>200 PFU) than ordinaryMyoviridaephages, suggesting effective host infection and lytic activity. However, differential development of resistance to SFP10 inS.Typhimurium andE. coliO157:H7 was observed; bacteriophage-insensitive mutant (BIM) frequencies of 1.19 × 10−2CFU/ml forS.Typhimurium and 4.58 × 10−5CFU/ml forE. coliO157:H7 were found, indicating that SFP10 should be active and stable for control ofE. coliO157:H7 with minimal emergence of SFP10-resistant pathogens but may not be forS.Typhimurium. Specific mutation ofrfaLinS.Typhimurium andE. coliO157:H7 revealed the O antigen as an SFP10 receptor for both bacteria. Genome sequence analysis of SFP10 and its comparative analysis with homologousSalmonellaVi01 andShigellaphiSboM-AG3 phages revealed that their tail fiber and tail spike genes share low sequence identity, implying that the genes are major host specificity determinants. This is the first report identifying specific infection and inhibition ofSalmonellaTyphimurium andE. coliO157:H7 by a single bacteriophage.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3