Selection of a Rare Neutralization-Resistant Variant following Passive Transfer of Convalescent Immune Plasma in Equine Infectious Anemia Virus-Challenged SCID Horses

Author:

Taylor Sandra D.1,Leib Steven R.1,Carpenter Susan12,Mealey Robert H.1

Affiliation:

1. Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040

2. Department of Animal Science, Iowa State University, Ames, Iowa 50011

Abstract

ABSTRACT Vaccines preventing HIV-1 infection will likely elicit antibodies that neutralize diverse strains. However, the capacity for lentiviruses to escape broadly neutralizing antibodies (NAbs) is not completely understood, nor is it known whether NAbs alone can control heterologous infection. Here, we determined that convalescent immune plasma from a horse persistently infected with equine infectious anemia virus (EIAV) neutralized homologous virus and several envelope variants containing heterologous principal neutralizing domains (PND). Plasma was infused into young horses (foals) affected with severe combined immunodeficiency (SCID), followed by challenge with a homologous EIAV stock. Treated SCID foals were protected against clinical disease, with complete prevention of infection occurring in one foal. In three SCID foals, a novel neutralization-resistant variant arose that was found to preexist at a low frequency in the challenge inoculum. In contrast, SCID foals infused with nonimmune plasma developed acute disease associated with high levels of the predominant challenge virus. Following transfer to an immunocompetent horse, the neutralization-resistant variant induced a single febrile episode and was subsequently controlled in the absence of type-specific NAb. Long-term control was associated with the presence of cytotoxic T lymphocytes (CTL). Our results demonstrate that immune plasma with neutralizing activity against heterologous PND variants can prevent lentivirus infection and clinical disease in the complete absence of T cells. Importantly, however, rare neutralization-resistant envelope variants can replicate in vivo under relatively broad selection pressure, highlighting the need for protective lentivirus vaccines to elicit NAb responses with increased breadth and potency and/or CTL that target conserved epitopes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3