Coordination of RNA Polymerase II Pausing and 3′ End Processing Factor Recruitment with Alternative Polyadenylation

Author:

Fusby Becky1,Kim Soojin1,Erickson Benjamin1,Kim Hyunmin1,Peterson Martha L.2,Bentley David L.1

Affiliation:

1. Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA

2. Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky Medical Center, Lexington, Kentucky, USA

Abstract

ABSTRACT Most mammalian genes produce transcripts whose 3′ ends are processed at multiple alternative positions by cleavage/polyadenylation (CPA). Poly(A) site cleavage frequently occurs cotranscriptionally and is facilitated by CPA factor binding to the RNA polymerase II (Pol II) C-terminal domain (CTD) phosphorylated on Ser2 residues of its heptad repeats (YS 2 PTSPS). The function of cotranscriptional events in the selection of alternative poly(A) sites is poorly understood. We investigated Pol II pausing, CTD Ser2 phosphorylation, and processing factor CstF recruitment at wild-type and mutant IgM transgenes that use alternative poly(A) sites to produce mRNAs encoding the secreted and membrane-bound forms of the immunoglobulin (Ig) heavy chain. The results show that the sites of Pol II pausing and processing factor recruitment change depending on which poly(A) site is utilized. In contrast, the extent of Pol II CTD Ser2 phosphorylation does not closely correlate with poly(A) site selection. We conclude that changes in properties of the transcription elongation complex closely correlate with utilization of different poly(A) sites, suggesting that cotranscriptional events may influence the decision between alternative modes of pre-mRNA 3′ end processing.

Funder

HHS | NIH | National Institute of General Medical Sciences

NSF | BIO | Division of Molecular and Cellular Biosciences

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3