D-type cyclin-dependent kinase activity in mammalian cells.

Author:

Matsushime H,Quelle D E,Shurtleff S A,Shibuya M,Sherr C J,Kato J Y

Abstract

D-type cyclin-dependent kinase activities have not so far been detected in mammalian cells. Lysis of rodent fibroblasts, mouse macrophages, or myeloid cells with Tween 20 followed by precipitation with antibodies to cyclins D1, D2, and D3 or to their major catalytic partner, cyclin-dependent kinase 4 (cdk4), yielded kinase activities in immune complexes which readily phosphorylated the retinoblastoma protein (pRb) but not histone H1 or casein. Virtually all cyclin D1-dependent kinase activity in proliferating macrophages and fibroblasts could be attributed to cdk4. When quiescent cells were stimulated by growth factors to enter the cell cycle, cyclin D1-dependent kinase activity was first detected in mid G1, reached a maximum near the G1/S transition, and remained elevated in proliferating cells. The rate of appearance of kinase activity during G1 phase lagged significantly behind cyclin induction and correlated with the more delayed accumulation of cdk4 and formation of cyclin D1-cdk4 complexes. Thus, cyclin D1-associated kinase activity was not detected during the G0-to-G1 transition, which occurs within the first few hours following growth factor stimulation. Rodent fibroblasts engineered to constitutively overexpress either cyclin D1 alone or cyclin D3 together with cdk4 exhibited greatly elevated cyclin D-dependent kinase activity, which remained absent in quiescent cells but rose to supraphysiologic levels as cells progressed through G1. Therefore, despite continued enforced overproduction of cyclins and cdk4, the assembly of cyclin D-cdk4 complexes and the appearance of their kinase activities remained dependent upon serum stimulation, indicating that upstream regulators must govern formation of the active enzymes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3