Significant Reductions in Gag-Protease-Mediated HIV-1 Replication Capacity during the Course of the Epidemic in Japan

Author:

Nomura Shigeru,Hosoya Noriaki,Brumme Zabrina L.,Brockman Mark A.,Kikuchi Tadashi,Koga Michiko,Nakamura Hitomi,Koibuchi Tomohiko,Fujii Takeshi,Carlson Jonathan M.,Heckerman David,Kawana-Tachikawa Ai,Iwamoto Aikichi,Miura Toshiyuki

Abstract

ABSTRACTHuman immunodeficiency virus type 1 (HIV-1) evolves rapidly in response to host immune selection pressures. As a result, the functional properties of HIV-1 isolates from earlier in the epidemic may differ from those of isolates from later stages. However, few studies have investigated alterations in viral replication capacity (RC) over the epidemic. In the present study, we compare Gag-Protease-associated RC between early and late isolates in Japan (1994 to 2009). HIV-1 subtype B sequences from 156 antiretroviral-naïve Japanese with chronic asymptomatic infection were used to construct a chimeric NL4-3 strain encoding plasma-derivedgag-protease. Viral replication capacity was examined by infecting a long terminal repeat-driven green fluorescent protein-reporter T cell line. We observed a reduction in the RC of chimeric NL4-3 over the epidemic, which remained significant after adjusting for the CD4+T cell count and plasma virus load. The same outcome was seen when limiting the analysis to a single large cluster of related sequences, indicating that our results are not due to shifts in the molecular epidemiology of the epidemic in Japan. Moreover, the change in RC was independent of genetic distance between patient-derived sequences and wild-type NL4-3, thus ruling out potential temporal bias due to genetic similarity between patient and historic viral backbone sequences. Collectively, these data indicate that Gag-Protease-associated HIV-1 replication capacity has decreased over the epidemic in Japan. Larger studies from multiple geographical regions will be required to confirm this phenomenon.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3