Functional Characterization of SsaE, a Novel Chaperone Protein of the Type III Secretion System Encoded by Salmonella Pathogenicity Island 2

Author:

Miki Tsuyoshi1,Shibagaki Yoshio2,Danbara Hirofumi1,Okada Nobuhiko1

Affiliation:

1. Department of Microbiology

2. Department of Biochemistry, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan

Abstract

ABSTRACT The type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2 (SPI-2) is involved in systemic infection and intracellular replication of Salmonella enterica serovar Typhimurium. In this study, we investigated the function of SsaE, a small cytoplasmic protein encoded within the SPI-2 locus, which shows structural similarity to the T3SS class V chaperones. An S. enterica serovar Typhimurium ssaE mutant failed to secrete SPI-2 translocator SseB and SPI-2-dependent effector PipB proteins. Coimmunoprecipitation and mass spectrometry analyses using an SsaE-FLAG fusion protein indicated that SsaE interacts with SseB and a putative T3SS-associated ATPase, SsaN. A series of deleted and point-mutated SsaE-FLAG fusion proteins revealed that the C-terminal coiled-coil domain of SsaE is critical for protein-protein interactions. Although SseA was reported to be a chaperone for SseB and to be required for its secretion and stability in the bacterial cytoplasm, an sseA deletion mutant was able to secrete the SseB in vitro when plasmid-derived SseB was overexpressed. In contrast, ssaE mutant strains could not transport SseB extracellularly under the same assay conditions. In addition, an ssaE ( I55G ) point-mutated strain that expresses the SsaE derivative lacking the ability to form a C-terminal coiled-coil structure showed attenuated virulence comparable to that of an SPI-2 T3SS null mutant, suggesting that the coiled-coil interaction of SsaE is absolutely essential for the functional SPI-2 T3SS and for Salmonella virulence. Based on these findings, we propose that SsaE recognizes translocator SseB and controls its secretion via SPI-2 type III secretion machinery.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3