Characterization of Two Seryl-tRNA Synthetases in Albomycin-Producing Streptomyces sp. Strain ATCC 700974

Author:

Zeng Yu1,Roy Hervé2,Patil Preeti B.1,Ibba Michael2,Chen Shawn1

Affiliation:

1. Molecular and Cellular Biology Program and Department of Biological Sciences, Ohio University, Athens, Ohio 45701

2. the Ohio State Biochemistry Program and Department of Microbiology, Ohio State University, Columbus, Ohio 43210

Abstract

ABSTRACT The Trojan horse antibiotic albomycin, produced by Streptomyces sp. strain ATCC 700974, contains a thioribosyl nucleoside moiety linked to a hydroxamate siderophore through a serine residue. The seryl nucleoside structure (SB-217452) is a potent inhibitor of seryl-tRNA synthetase (SerRS) in the pathogenic bacterium Staphylococcus aureus , with a 50% inhibitory concentration (IC 50 ) of ∼8 nM. In the albomycin-producing Streptomyces sp., a bacterial SerRS homolog (Alb10) was found to be encoded in a biosynthetic gene cluster in addition to another s erRS gene ( serS1 ) at a different genetic locus. Alb10, named SerRS2 herein, is significantly divergent from SerRS1, which shows high homology to the housekeeping SerRS found in other Streptomyces species. We genetically and biochemically characterized the two genes and the proteins encoded. Both genes were able to complement a temperature-sensitive serS mutant of Escherichia coli and allowed growth at a nonpermissive temperature. serS2 was shown to confer albomycin resistance, with specific amino acid residues in the motif 2 signature sequences of SerRS2 playing key roles. SerRS1 and SerRS2 are comparably efficient in vitro, but the K m of serine for SerRS2 measured during tRNA aminoacylation is more than 20-fold higher than that for SerRS1. SB-217452 was also enzymatically generated and purified by two-step chromatography. Its IC 50 against SerRS1 was estimated to be 10-fold lower than that against SerRS2. In contrast, both SerRSs displayed comparable inhibition kinetics for serine hydroxamate, indicating that SerRS2 was specifically resistant to SB-217452. These data suggest that mining Streptomyces genomes for duplicated aminoacyl-tRNA synthetase genes could provide a novel approach for the identification of natural products targeting aminoacyl-tRNA synthetases.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3