Macroamphiphilic Components of Thermophilic Actinomycetes: Identification of Lipoteichoic Acid in Thermobifida fusca

Author:

Rahman Obaidur1,Pfitzenmaier Markus2,Pester Oxana1,Morath Siegfried3,Cummings Stephen P.1,Hartung Thomas4,Sutcliffe Iain C.1

Affiliation:

1. School of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom

2. Department of Organic Chemistry, University of Marburg, 35043 Marburg, Germany

3. EU Joint Research Centre, Institute for Health and Consumer Protection In-Vitro Toxicology Unit/European Centre for the Validation of Alternative Methods (ECVAM), T.P. 580, Via E. Fermi 2749, I-21027 Ispra

4. EU Joint Research Centre, Institute for the Protection and the Security of the Citizen (IPSC), Traceability, Risk and Vulnerability Assessment Unit (TRiVA), 21027 Ispra, Italy

Abstract

ABSTRACT The cell envelopes of gram-positive bacteria contain structurally diverse membrane-anchored macroamphiphiles (lipoteichoic acids and lipoglycans) whose functions are poorly understood. Since regulation of membrane composition is an important feature of adaptation to life at higher temperatures, we have examined the nature of the macroamphiphiles present in the thermophilic actinomycetes Thermobifida fusca and Rubrobacter xylanophilus . Following hot-phenol-water extraction and purification by hydrophobic interaction chromatography, Western blotting with a monoclonal antibody against lipoteichoic acid strongly suggested the presence of a polyglycerophosphate lipoteichoic acid in T. fusca . This structure was confirmed by chemical and nuclear magnetic resonance analyses, which confirmed that the lipoteichoic acid is substituted with β-glucosyl residues, in common with the teichoic acid of this organism. In contrast, several extraction methods failed to recover significant macroamphiphilic carbohydrate- or phosphate-containing material from R. xylanophilus , suggesting that this actinomycete most likely lacks a membrane-anchored macroamphiphile. The finding of a polyglycerophosphate lipoteichoic acid in T. fusca suggests that lipoteichoic acids may be more widely present in the cell envelopes of actinomycetes than was previously assumed. However, the apparent absence of macroamphiphiles in the cell envelope of R. xylanophilus is highly unusual and suggests that macroamphiphiles may not always be essential for cell envelope homeostasis in gram-positive bacteria.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3